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Abstract
We present an exact solution for the dynamics of online Hebbian learning in
neural networks, with restricted and unrealizable training sets. In contrast to
other studies on learning with restricted training sets, unrealizability is here
caused by structural mismatch, rather than data noise: the teacher machine is
a perceptron with a reversed-wedge-type transfer function, while the student
machine is a perceptron with a sigmoidal transfer function. We calculate the
glassy dynamics of the macroscopic performance measures, training error and
generalization error, and the (non-Gaussian) student field distribution. Our
results, which find excellent confirmation in numerical simulations, provide a
new benchmark test for general formalisms with which to study unrealizable
learning processes with restricted training sets.

PACS numbers: 87.18.Sn, 05.20.-y, 87.10.+e

Online learning processes in artificial neural networks have been studied using statistical
mechanical techniques for about a decade now (see, for example, [1,2] for reviews). Initially,
most dynamical studies were restricted to the regime where the number of training examples is
larger than the number of learning steps, since this generally leads to Gaussian field distributions
and relatively simple non-glassy dynamics. In practical situations, however, it is usually
difficult to acquire large training sets, and one is therefore often forced to recycle the data in the
training set. The latter situation, characterized by the presence of disorder (the composition of
the training set) and non-trivial dynamics, was studied in for example, [3,4] (for binary weights),
and in [5–10] (for continuous weights). These studies generally involve approximations at
some stage. This motivated [11], where it was shown how for the special case of online
Hebbian learning the dynamics can be solved exactly (for restricted training sets), providing
an excellent benchmark for general theories and approximation schemes. Some of the studies
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mentioned above involved learning from restricted but unrealizable training sets, where it is
impossible for the student to achieve perfect performance, even if an infinitely large training
set had been available. This could result from corruption by noise of realizable data (as in
for example, [8, 11]), or from structural mismatch between teacher and student. A typical toy
model to realize the latter situation is obtained by using a perceptron with a reversed wedge
transfer function as a teacher machine to train an ordinary perceptron [12–14] (note: there is
also a relation between simple perceptrons with reversed wedge transfer functions and the so-
called parity machines). Since all dynamical studies with restricted but unrealizable training
sets have so far been carried out only for the data noise scenario, it would be of considerable
interest to investigate exactly solvable models with restricted training sets but unrealizability
due to structural mismatch. In this letter, we carry out such a study: we solve the dynamics
of online Hebbian learning from unrealizable restricted training sets, for a teacher–student
scenario where teacher and student have different transfer functions (a reverse-wedge and a
sigmoidal one, respectively).

We investigate online learning in a ordinary student perceptron S (whose weight vector is
denoted by J), which tries to learn a task defined by a teacher perceptron Ta (whose weight
vector is denoted by B). The teacher is equipped with a reversed-wedge transfer function,
i.e. Ta(y) = sgn[y(a − y)(a + y)] where y = B · ξ and ξ ∈ {−1, 1}N is the input vector,
whereas S(x) = sgn[x] with x = J · ξ. The teacher’s weight vector B is normalized such
that B2 = 1, with Bi = O(N−1/2) for each i. It is clear that in the limits a → 0 and a → ∞
(where a characterizes the width of the reverse wedge) the task becomes realizable for the
student, since T0(y) = sgn[−y] and T∞(y) = sgn[y].

We define the conventional order parameters Q[J] ≡ J2 and R[J] ≡ B · J . One of
the main quantities of interest is the generalization error Eg, the probability of disagreement
between teacher and student for input vectors taken randomly from the full set of all possible
inputs:

Eg ≡ 〈�[−Ta(y)S(x)]〉ξ

=
∫ a

0
Du erf[r+(u)] +

∫ ∞

a

Du erf[r−(u)] (1)

where r±(u) ≡ ±Ru/
√

2(Q−R2), Du ≡ (2π)−
1
2 du e−u2/2, �[· · ·] is the step function,

and 〈· · ·〉ξ denotes averaging over all ξ ∈ {−1, 1}N . It was shown in [13] that the optimal
normalized overlap r = R/√Q (giving the smallest value of the generalization error) equals 1
as long as the reversed-wedge parameter a is greater than a = ac1 = 0.8; r suddenly changes
from 1 to r∗ = −

√
(2 log 2 − a2)/2 log 2 at a = ac1.

For this model system, we use the following online Hebbian: learning rule

J(� + 1) =
(

1 − γ

N

)
J(�) +

η

N
T µ(�)a ξµ(�) (2)

where � indicates the learning step, and η and γ represent the learning rate and the weight
decay, respectively. The student learns from data picked randomly from the restricted training
set D = {(ξµ, T µa ), µ = 1, . . . , p = Nα}.

To calculate macroscopic physical observables, averaged over the disorder (the
composition of the training set) at any time, we need to distinguish between two
averaging procedures [11]. The first is the average over all possible ‘paths’ � =
{µ(0), µ(1), . . . , µ(�), . . .} defining the actual sampling order from the training set

〈f (ξµ(l), Ta)〉� ≡ 1

p

p∑
µ=1

f (ξµ, Ta). (3)
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The second is the average over all the training sets:

〈f [(ξ1, T 1
a ), . . . , (ξ

p, T pa )]〉sets ≡ 2−pN ∑
ξ1

· · ·
∑
ξp

∑
T 1
a ,...,T

p
a

∏
µ

P (T µa |ξµ)

× f [(ξ1, T 1
a ), . . . , (ξ

p, T pa )]. (4)

The key to the full solvability of the present model as in [11], is the fact that (2) allows us to
write J(m) (the student’s weight vector at mth step) in explicit form as

J(m) = σmJ(0) +
η

N

m−1∑
�=0

σm−�−1T µ(�)a ξµ(�) (5)

where σ ≡ (1 − η/N). The above averaging procedures can now be carried out exactly.
In order to evaluate the training time dependence of the generalization error (1),

following [11], we first calculate the following two macroscopic observables:

Q(t) ≡ lim
N→∞

〈〈Q[J(m)]〉�〉sets R(t) ≡ lim
N→∞

〈〈R[J(m)]〉�〉sets (6)

where t ≡ m/N . Squaring (5) gives

〈〈Q[J(m)]〉�〉sets = σ 2NtQ0 +
2η

N

m−1∑
�=0

σ 2m−�−1〈〈J0 · ξµ(�)T µ(�)a 〉�〉sets

+
η2

N2

m−1∑
�,�′=0

〈〈σm−�−1σm−�′−1ξµ(�) · ξµ(�
′)T µ(�)a T µ(�

′)
a 〉�〉sets.

After calculating the averages 〈· · ·〉� and 〈· · ·〉sets, and taking N → ∞, we then obtain

Q(t) = e−2γ tQ0 +
2ηρaR0

γ
e−γ t (1 − e−γ t ) +

η2

2γ
(1 − e−2γ t ) +

η2

γ 2
(1/α + ρ2

a )(1 − e−γ t )2 (7)

where we defined ρa ≡ 〈(v · ξ)Ta(B · ξ)〉ξ = √
2/π(1−2 e−a2/2). The quantity ρa represents

a kind of effective noise induced by the reversed wedge of the teacher. In a similar manner we
obtain an exact expression for the student–teacher overlap R(t):

R(t) = e−γ tR0 +
ηρa

γ
(1 − e−γ t ). (8)

The length of the component of J which is orthogonal to B,
√
Q− R2, is seen to remain

independent of ρa . This is easily understood. The components of the input vectors which are
orthogonal to B are uncorrelated with the training outputs, so their evolution is not modified
by the effect of the reversed wedge. From (7) and (8), in turn, we immediately obtain the
generalization error at any time via (1). For t → ∞ this becomes

lim
t→∞Eg =

∫ a

0
Du erf[r+

∗ (u)] +
∫ ∞

a

Du erf[r−∗ (u)] (9)

with r±∗ (u) ≡ ±ρau/
√
γ + 2/α. In figure 1, we show the asymptotic value of Eg for α → ∞

(where we recover the unrestricted training sets behaviour), for different γ . We see that for
γ = 0, Eg converges to 2 erf(a/

√
2) for a < ac2 = √

2 log 2 and to 1 − 2 erf(a/
√

2) for
a > ac2, with an asymptotic scaling form Eg ∼ α−1/2 as α → ∞ [13]. On the other
hand, for γ > 0, Eg converges to E∗

g |α=∞ as Eg ∼ α−1. For γ = 0 and a < ac2, the
asymptotic generalization error Eg is seen to be larger than that corresponding to random
guessing (over-training) [13]. When we introduce weight decay this phenomenon disappears.
An optimal weight decay, minimizing the asymptotic Eg, exists for a < ac2 and is given by
γopt = 2a2ρ2

a/(2 log 2 − a2).
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Figure 1. (a) The asymptotic generalization error as a function of the width of the reversed wedge,
a, in the limit of α → ∞, for γ = 0 (——), γ = 0.5 (· · · · · ·) and γ = 1 (- - - -). We chose η = 1.
(b) The corresponding normalized overlap r = R/√Q which gives the generalization error in (a).
The best possible values for the generalization error and the optimal normalized overlap are shown
by thick curves.

For finite α and short times, t � 1/γ , we can expand (7) and (8) with respect to γ t and
find R(t) = R0 + ηρat, Q(t)− R2(t) = Q0 − R2

0 + η2t + η2t2/α. In this regime the training
time is too short for weight decay to have an effect. For t � 1/γ , on the other hand, it is clear
from (7) and (8) that the order parametersQ,R decay to their asymptotic values exponentially.
For the case of γ → 0, the small γ t expansions are valid for all time. Upon expanding Eg

with respect to γ we obtain

Eg �
∫ a

0
Dx erf

[√
α

2
ρax

]
+

∫ ∞

a

Dx erf

[
−

√
α

2
ρax

]
+

α

2t
√

2π(1 + αρ2
a )
.
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Figure 2. The student field distribution Pt(x) generated during online Hebbian learning, from
a teacher with a reversed wedge of width a = 1 and for η = 1, α = 0.5 and γ = 0.5, at times
t ∈ {1, 2, 3, 4}. Solid curves: the theoretical result (11). Histograms: results obtained via computer
simulations for systems of size N = 10 000.
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We next turn to the student field distribution Pt(x). If the number of examples in the
training set is much larger than the number of training steps (i.e. for α → ∞), the student
fields x = J · ξ are described by a Gaussian distribution due to the central limit theorem. For
α < ∞, however, where the training sets are restricted and questions are recycled during the
training process, complicated correlations build up and the field distribution generally acquires
a non-Gaussian shape. In order to determine Pt(x), we first calculate the joint distribution for
student fields, teacher fields and outputs (with x, y ∈ R and Ta ∈ {−1, 1}):

P(x, y, Ta) = lim
N→∞

1

p

p∑
µ=1

〈〈 δ(x − J · ξµ)δ(y − B · ξµ) δTa,T µa 〉�〉sets.

Its characteristic function is

P̂t(x̂, ŷ, T̂ ) = 〈e−i(x̂x+ŷy+T̂ T )〉Pt(.,.,.)

where 〈f (x, y, Ta)〉Pt(.,.,.) = ∫
dx dy

∑
Ta=±1 Pt(x, y, Ta)f (x, y, Ta). Working out the (3) and

(4) averages we obtain

P̂t(x̂, ŷ, T̂ ) = lim
N→∞

〈
1

p

p∑
µ=0

exp[−ix̂σNtJ0 · ξµ − iŷB · ξµ − iT̂ T µa ]

×
〈
exp

(
− iηx̂

N

Nt∑
�=0

σNt−�ξµ · ξµ(�)T µ(�)a

)〉
�

〉
sets

.

By using the general relation

P̂t(x̂, ŷ, T̂ ) =
∫

dx dy
∑
Ta=±1

e−i(x̂x+ŷy+T̂ Ta)Pt(x|y, Ta)P (y, Ta) (10)

and some further algebra, following closely the procedure outlined in [11] (to which we refer
for details), we then obtain the probability density Pt(x) as

Pt(x) =
∫

Dy
∑
Ta=±1

Pt(x|y, Ta)P (Ta|y)

=
∫

dx̂

2π
e−Q

2 x
2+χr(x̂) cos(x̂x)

[
cos(χi(x̂)) +G(x̂R)sin(χi(x̂))

]

−4e− a2

2

∫
dx̂

2π
e−Q

2 x̂
2+χr(x̂) cos(x̂x) sin(χi(x̂))

∫ xR̂

0

dλ√
2π

e
λ2

2 cos(aλ) (11)

where we defined the functions χr, χi and G as

χr(x̂) ≡ 1

α

∫ t

0
ds

{
cos [ηx̂e−γ (t−s)] − 1

}

χi(x̂) ≡ − 1

α

∫ t

0
ds sin [ηx̂e−γ (t−s)]

G(.) ≡ e
1
2.

2
∫

Dz sin(.|z|) = 2
∫ .

0

dλ√
2π

e
λ2

2 .

It follows from (11) that Pt(x) is a symmetric function of x, for all times and all values
of the reversed-wedge width, a. In the special cases a = ∞ and 0 (where the task becomes
realizable) we find our result (11) reducing to that of [11]

Pt(x) =
∫

dx̂

2π
e− 1

2Qx̂
2+χr(x̂) cos(x̂x)

{
cos(χi(x̂)) + (1− 2λ)G(x̂R) sin(χi(x̂))

}
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Figure 3. Training errors Et and generalization errors Eg as functions of time, for different values
of α. In all cases η = 1 and γ = 0.5, with initial conditions Q0 = 1 and Eg(t = 0) = 0.5.
(a) a = 0.0, (b) a = 0.5, (c)a = 1.0 and (d) a = 1.5. In each panel, the upper three solid
curves indicate our theoretical results of Eg, together with the corresponding results of computer
simulations: � α = 0.5; α = 1.0; and • α = 4.0. The lower three lines are theoretical results
for Et , compared with the results of computer simulations, with: � α = 0.5; α = 1.0; and •
α = 4.0. All simulations were carried out for systems of N = 5000 in size.

with λ = 0 for a = ∞, and λ = 1 for a = 0. This is consistent with [11], where the parameter
λ denoted the probability that a teacher output was corrupted by noise. Here we find that, if the
width of the reversed wedge is zero, the transfer function of the teacher is the inverse of that of
the student, and the output of the teacher can be regarded as a noisy output with flip probability
λ = 1. In contrast, in the general case 0 < a < ∞, equation (11) shows that the effect of
structural non-realizability cannot be described by an ‘effective’ output noise. In figure 2 we
plot Pt(x) as given by equation (11) for a = 1, η = 1 and γ = 0.5 at different points in
time, and we compare the result to the corresponding observations in numerical simulations
(histograms). One clearly observes how Pt(x) evolves from a Gaussian distribution at t = 0
to a manifestly non-Gaussian one.

Finally, we calculate the training error Et , which measures the average fraction of errors
made by the student on inputs taken from the training set. It is given by

Et =
∫ ∫

dx Dy
∑
Ta=±1

�[−Ta(y)S(x)]Pt(x|y, Ta)P (Ta|y).
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By using (10) and (11) we can obtain the explicit form of Et as

Et = 1

2
−

∫
dx̂

2πx̂
e−Q

2 x̂
2+χr(x̂)[G(x̂R) cos(χi(x̂))− sin(χi(x̂))]

+ 4e− a2

2

∫
dx̂

2πx̂
e−Q

2 x̂
2+χr(x̂)cos(χi(x̂))

∫ x̂R

0

dλ√
2π

e
λ2

2 cos(aλ). (12)

In figure 3, we plot both the training error (12) and the generalization error (1) for four different
values of the width a of the teacher’s reversed wedge, namely a ∈ {0.0, 0.5, 1.0, 1.5}. In all
cases we find the theoretical results and the computer simulations to be in excellent agreement.
For the limit t → ∞ we also observe that the asymptotic values of both Eg and Et indeed
approach E∗

g (see (9)) for increasing α, as they should.
In conclusion, in this letter we have exactly solved the dynamics of online Hebbian learning

with structurally unrealizable restricted training sets, in the case where a standard perceptron
is trained by a teacher perceptron with a reversed-wedge transfer function. Although our
solution applies only to Hebbian learning (as did that in [11]), we believe that our results
provide a valuable new benchmark against which to test (approximations made in) more general
formalisms such as generating functional analysis [3,4,10], dynamical replica theory [5,6,8,9]
or the cavity method [7].

The authors would like to thank King’s College London (JI) and the Tokyo Institute of
Technology (ACCC) for their hospitality.
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